
A Sequential Approach for Surmising Missing Items
in the Shopping Cart

Arshiya Subhani, Prof. P.Pradeep kumar
Department CSE, Vivekananda Institute of Technology and Science, Karimnagar, A.P, India

Abstract:Existing research in association mining has focused
mainly on how to expedite the search for frequently co-
occurring groups of items in “shopping cart” type of
transactions; less attention has been paid to methods that exploit
these frequent itemsets for prediction purposes. This paper
contributes to the latter task by proposing a technique that uses
partial information about the contents of a shopping cart for the
prediction of what else the customer is likely to buy. Using the
recently proposed data structure of itemset trees (IT-trees), we
obtain, in a computationally efficient manner, all rules whose
antecedents contain at least one item from the incomplete
shopping cart. Then, we combine these rules by uncertainty
processing techniques, including the classical Bayesian decision
theory and a new algorithm based on the Dempster-Shafer (DS)
theory of evidence combination.

Key Words: Frequent itemsets, itemset trees (IT-Tresss),
uncertainty processing, Dempster-Shafer theory.

1. INTRODUCTION
The primary task of association mining is to detect frequently
co-occurring groups of items in transactional databases. The
intention is to use this knowledge for prediction purposes: if
bread, butter, and milk often appear in the same ransactions,
then the presence of butter and milk in a shopping cart
suggests that the customer may also buy bread. More
generally, knowing which items a shopping cart contains, we
want to predict other items that the customer is likely to add
before proceeding to the checkout counter.
 This paradigm can be exploited in diverse applications For
example, in the domain discussed in [1], each “shopping
cart” contained a set of hyperlinks pointing to a Web page
[1]; in medical applications, the shopping cart may contain a
patient’s symptoms, results of lab tests, and diagnoses; in a
financial domain, the cart may contain companies held in the
same portfolio; and Bollmann-Sdorra et al. [2] proposed a
framework that employs frequent itemsets in the field of
information retrieval.The prediction task was mentioned as
early as in the pioneering association mining paper by
Agrawal et al. [3], but the problem is yet to be investigated in
the depth it deserves. The literature survey in [4] indicates
that most authors have focused on methods to expedite the
search for frequent itemsets, while others have investigated
such special aspects as the search for time-varying
associations [5], [6] or the identification of localized patterns
[7]. Still, some prediction-related work has been done as
well.
 In our work, we wanted to make the next logical step by
allowing any item to be treated as a class label—its value is
to be predicted based on the presence or absence of other
items. Put another way, knowing a subset of the shopping
cart’s contents, we want to “guess” (predict) the rest.It is

important to understand that allowing any item to be treated
as a class label presents serious challenges as compared with
the case of just a single class label. The number of different
items can be very high, perhaps hundreds, or thousand, or
even more. To generate association rules for each of them
separately would give rise to great many rules with two
obvious consequences: first, the memory space occupied by
these rules can be many times larger than the original
database .second, identifying the most relevant rules and
combining their sometimes conflicting predictions may easily
incur prohibitive computational costs. In our work, we sought
to solve both of these problems by developing a technique
that answers user’s queries (for shopping cart completion) in
a way that is acceptable not only in terms of accuracy, but
also in terms of time and space complexity.

2. PROBLEM STATEMENT
Let I={i1,…….in}be a set of distinct items and let a database
consist of transactions T1,. . . ,TN such that Ti I; 8i. An
itemset, X, is a group of items, i.e., X _ I. The support of
itemset X is the number, or the percentage, of transactions
that subsume X. An itemset that satisfies a user-specified
minimum support value is referred to as a frequent itemset or
a high support itemset.
 An association rule has the form r(a) →r(c), where r(a) and
r(c) are itemsets. The former, r(a), is the rule’s antecedent and
the latter, r(c), its consequent. The rule reads: if all items from
r(a) are present in a transaction, then all items from r(c) are
also present in the same transaction..The probabilistic
confidence in the rule r(a) →r(c) can be defined with the help
of supports (relative frequencies) of the antecedent and
consequent as the percentage of transactions that contain r(c)
among those transactions that contain r(a):
Conf = support(r(a) U r(c))/support(r(a)). –(1)
Let s be a given itemset. An algorithm developed in [4]
generates, in a computationally feasible manner, all rules s→l
,that satisfy the user-supplied minimum support and
confidence values Өs and Өc, respectively. Of course, if no
frequent item set subsumes s, no rules are generated.
However, we are also interested in rules with antecedents that
are subsumed by s. Furthermore, we need to be aware of the
circumstance that the presence of an item might suggest the
absence of other items. With all these issues in mind, we
narrow down the space of association rules by the following
guidelines:
1. For a given itemset s, rule antecedents should be subsumed
by s.
2. The rule consequent is limited to any single “unseen”
item (presence or absence of the unseen item).

Arshiya Subhani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1856-1861

1856

3.THE PROPOSED APPROACH
Association rule mining (ARM) in its original form finds all
the rules that satisfy the minimum support and minimum
confidence constraints. Many later papers tried to integrate
classification and ARM. The goal was to build a classifier
using so-called class association rules. In classification rule
mining, there is one and only one predetermined target, the
class label. Most of the time, classification rule mining is
applied to databases in a “table” format, with a predefined set
of attributes and a class label. Attributes usually take a value
out of a finite set of values (although missing values are often
permitted).
 Some papers, such as [8] and [9], demonstrated encouraging
results by incorporating DS theoretic notions with class
association rules. But most of these methods were designed
for data sets with limited number of attributes (or data sets
with small number of distinct items) and one class label. In
our task, we do not have a predefined class label. In fact, all
items in the shopping cart become attributes and the
presence/absence of the other items has to be predicted. What
is needed is a feasible rule generation algorithm and an
effective method to use to this end the generated rules. For
the prediction of all missing items in a shopping cart, our
algorithm speeds up the computation by the use of the itemset
trees (IT-trees) and then uses DS theoretic notions to
combine the generated rules. The flowchart in Fig. 1 shows
an outline of our proposed system.

Fig. 1. An overview of our proposed system.

3.1 Itemset Tree (IT-Tree)
Let us briefly summarize the technique of IT-trees as
developed in [4]. Here, items are identified by an
uninterrupted sequence of integers. Let D denote a set of
itemsets and let M be the noumber of distinct items
encountered in D. Each item is identified with an integer
from [1,M] so that items in an itemset, s=[a1,a2,….ap], can be
ordered; ai<aj for i<j,where ai and aj are integers identified ith
and jth items respectively.
Definition 1
(ancestor,largest common ancestor,child):
Let the symbols s,c,and l denote itemsets.

1. s is an ancestor of c and write s c iff s=[a1,a2,….am], c
s=[a1,a2,….an],, and m≤n.
2. we say that l is the largest common ancestor of s and c, and

write l= s c iff l s, l c, and there is no l’ such that l’
s, l’ c, and l ≠ l’.
3. c is a child of s iff s c and there is no l, different from s
and c, such that
 s l c.

Definition 2(Itemset tree):
An item set tree T,consists of a root and a (possibly empty)
set,{T1,T2,…..,TK}, each element of which is an itemset
tree.The root is a pair [s,f(s)] where s is an itemset and f(s) is
a frequency.If si denotes the itemset associated with the root
of the i-th subtree, then s si,s≠ si,must be atisfied for all i.
 An IT-tree is a partially ordered set of
pairs,[itemset,f],where the f-value tells us how many
occurrences of the itemset the node represents. An algorithm
that builds the IT-tree in a single pass through the database is
presented in [4] that also proves some of the algorithm’s
critical properties. For example, the number of nodes in the
IT-tree is upper-bounded by twice the number of transactions
in the original database (although experiments indicate that,
in practical applications, the size of the IT-tree rarely exceeds
the size of the database). Moreover, each distinct transaction
database is represented by a unique IT-tree and the original
transaction can be reproduced from the IT-tree. Note that
some of the itemsets in IT-tree (e.g.,[1, 2, 4] in Fig. 2) are
identical to at least one of the transactions contained in the
original database, whereas others (e.g.,[1;,2]) were created
during the process of tree building where they came into
being as common ancestors of transactions from lower levels.
They modified the original tree building algorithm by
flagging each node that is identical to at least one transaction.
In Fig. 2, the flags are indicated by black dots. This flagged
IT-tree will become the base of our rule generation algorithm.

Example 1: (An IT-Tree). The flagged IT-tree of the
database
D ={ [1,4],[2,5],[1,2,3,4,5],[1,2,4],[2,5],[2,4] } is shown in
Fig. 2

.
Fig. 2. The IT-tree constructed from the database D in
Example 1.

Arshiya Subhani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1856-1861

1857

3.2 Rule Generation Mechanism
The proposed rule generation algorithm makes use of the
flagged IT-tree created from the training data set. The
algorithm takes an incoming itemset as the input and returns
a graph that defines the association rules entailed by the
given incoming itemset. The graph consists of two lists: the
antecedents list R(a) and the consequents list R(c). Each node,
ri

(a), in the antecedents list keeps the corresponding frequency
count f(ri

(a)).
 As shown in Fig. 3, a line, li;j, between the two lists links
an antecedent ri

(a) i with a consequent Ij. The cardinality of
the link, f(lij), represents the support count of the rule ri

(a) →
Ij. The frequency counts denoted by fo(·) are used in the
process of building the graph. If the incoming itemset is s and
if Ti represents a transaction in the database, then fo (r(a))
records the number of times s Ti = r(a). Thus, fo(lij) records
the number of times where s Ti = r(a). All the frequency
counts are initialized to zero at the beginning of the algorithm
and updated as we traverse the IT-tree.

Fig. 3. The Rule Graph, G. f(ri

(a))= frequency count of
antecedent, f(lij),=support count of rule r(a) Ij.

Algorithm 1 conducts a depth-first search in the IT-tree to
identify the nodes that have nonempty intersections with s.
Note that the items in s and ci are referred to by their
corresponding integer representations and sorted in the
ascending order.
Algorithm 1: Rule_mining
The individual steps of the algorithm can be summarized as
follows: Let R =[sR, f(sR)] denote the root, ci denote the
children of R, and s denote the incoming itemset. If the first
item in ci is greater than the last item in s, it is certain that no
tree node rooted at ci will contain items from itemset s. If s
ci = and the last item in ci is greater than the last item in s,
then, again, it is certain that no nodes in the subsequent trees
have nonempty intersections with s. But if the first item of ci
is less than the last item of s, subtree Ti with the root [ci, fci]
may contain one or more items from s. The algorithm starts
the search for rules in subtrees rooted at the children of ci. If
s ci≠ , the intersection (say, ra) is a candidate for a rule
antecedent. However, if the node [ci; f(ci)] is not To invoke
Rule_mining:

Algorithm that process the itemset tree T and returns the rule
graph G that predicts unseen items in a user-specified itemset
s. Let R denote the root of T and let {ci,f(ci)} be Rs
children.Let Ti denote the subtree whose root is {ci,f(ci)}.
G = Rule_mining(s,T,{ }).
1: Rule_mining(s,T,G):
2: for all ci such that first_item(ci) ≤ last_item(s) do

3: if s ci = ; and last_item(ci) < last_tem(s) do
4: G Rule_mining(s,Ti,G);

5: else if r(a) = s ci≠ ; then
6: if ci is not flagged then
7: G Rule mining(s,Ti,G);
8: else
9: if ci does not have children then fo f(ci);
10: elsefo f(ci)-∑f(ci’s children);∆f o is
 the frequency of ci in the database
11: end if
12: G Update_Graph(G, ra, ci, fo);
13: G Rule mining(s,Ti,G);
14: end if
15: end if
16: end for
17: return G;

flagged (i.e., if itemset ci does not exist in the actual data set),
the candidate antecedent looses the candidacy status. Now,
the nodes in the subtrees starting from children of ci possess
intersections with s that are equal to r(a) or larger than r(a) (i.e.,
the intersection is a superset of ra). The algorithm thus
continues the search for rules in the subtrees rooted at the
children of ci. If ci is flagged, the number of occurrences of
ci in the data set is calculated as f(ci)-∑f(c’s children). Then,
ra becomes a rule antecedent and each item in ci \ra becomes
aconsequent. The new rules, ra ij, where ij €(ci\ra),are
added to the rule graph Each nonempty intersection of s with
a flagged node of the tree generates set of association rules of
the form ra ij, where ra is the intersection of s with the
node and ij is an item in node such that ij doesnot contain ra.
Note that aflagged node represents an actual transaction in
the data set; the number of flagged nodes is upper-bounded
by N (the number of transactions in the data set). These rules
are added to the rule graph using Algorithm 2. The idea is to
update the frequency counts of all rules ri

(a) ij, where ra
ri

a. If the new rule does not exist in the rule graph, it has to be
added to the graph and the frequency count has to be updated
using all the rules of the form ri

(a) ij, where ra ri
a.

Algorithm 2. Simplified algorithm to update the rule graph.
Let G denote the current rule graph.
Let ci denote an itemset from a node and fo denote the
number of appearances of ci in the database.

Let ra = ci s where s is the incoming itemset.
To invoke Update_Graph use: G = Update_Graph(G, ra,
Ci, fo).
1: Update_Graph(G, ra, ci, fo):
2: for all ra in R(a) do

Arshiya Subhani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1856-1861

1858

3: if ri
a ra then

4: update the frequency count of ri
a,f(ri

a)f(ri
a)+fo;

5: for all ri
a- ij where ij €(ci\ ra) do

6: update frequency count of rule ra ij, f(li;j)f(li;j)+ fo;
7: end for
8: if ri

a = ra then
9: update frequency count record, fo (ri

a)fo(ri
a)+f0;

10: for all ri
a ij where ij €(ci \ ra) do

11: update frequency count record of rule,f0(lij)fo(li;j)+ fo;
12: end for
13: end if
14: else if ra ri

a then
15: update the frequency count of new rule antecedent
f(r(a)) f(r(a)) + f0 (ri

(a));
16: for all ri

(a) in G where ij € (ci\ r(a)) do
17: update the frequency count of new rule r(a)) ij,
(add f0(lij));
18: end for
19: end if
20: end for
21: for all ij € (ci\ r(a)) do
22: if β(r(a)ij) € G then
23: add the rule to the graph with corresponding
frequency counts;
24: end if
25: end for
26: return G;

The size of the antecedent list Raof the rule graph G is upper-
bounded by min(N,2P),where p is the size of the itemset s.
The size of Rc is upper-bounded by (n-P), where n is the
number of distinct items in the data set. At the beginning,
each list is empty; they grow as we traverse through the
itemset tree. Algorithm 1 scans the IT-tree and calls
Algorithm 2 each time it comes across a flagged node. At
each call, Algorithm 2 carries out one traversal of the ruleset
(and possibly adds some rules to it). Thus the worst case
complexity of the rule generation process is O(N2).In reality,
the computation complexity is much lower because the
number of nodes that have nonempty intersections with s
usually constitute only a small fraction of N. In addition,
when p is small, the size of the rule antecedent list could be
much smaller than N (i.e., when 2p < N).

Example 2 (A Rule Generation Example). We consider
the same data set as in the previous example, viz.,
D ={ [1,4],[2,5],[1,2,3,4,5],[1,2,4],[2,5],[2,4] }. Assume
that the incoming itemset s =[2,3]. Fig. 4 shows the step-by-
step building of the rule graph by Algorithm 1. The itemset s
has nonempty intersections with four flagged nodes,
[1,2,3,4,5],[1,2,4],[2,4] and [2,5] .A set of rules is added to
the rule graph with each nonempty intersection.
Consider the intersection with the flagged node ci =[1, 2, 3,
4, 5]. The intersection, r(a)=[2,3], is added to the antecedent
list of the rule graph and the consequents 1,4,5 are added to
the consequent list together with links connecting antecedent
and consequents. Since the frequency count of the node is fo

= 1all the fo (·)values in the graph assume 1, as shown in Fig.
4a (lines 21-25 of Algorithm. 2). At the node [1,2,4] the
intersection, [2], is taken as r(a). Frequency counts f(r(a)
,f0(,r

(a)and all frequency counts of both candidate
([2]1),([2]4) are initialized to frequency count of the
node [1, 2, 4], fo =1. Since the current rule graph contains [2,
3] in Ra and [2] is a subset of [2, 3], update the frequency
counts according to lines 15-18. Add the new rules to the
graph (lines 21-25). At the node [2, 4], the intersection is
again [2]. Since it is already in the graph, update the
frequency counts of the antecedent and corresponding rule
(i.e., [2]4) according to lines 4-13. Processing of the node
[2;,5] is similar to the previous case. However, in this case, a
new rule [2]5 is added to the graph (line 21-25).
 The ruleset that resides in G is given in Table 1. The rule
[2, 3] 1 suggests that, if the itemset [2;,3] is present in a
shopping cart, item 1 is likely to be added to the cart. Support
of this rule is 1=6 and the confidence is 1. Note that the
ruleset in Table 1 consists of only two distinct antecedents:
[2] and [2, 3]. Since no minimum support or confidence
threshold is applied yet, one may expect another ruleset with
the antecedent [3]. However, our algorithm does not generate
rules having antecedent [3]. Note that no transaction Ti in the
data set D provides
an intersection Ti s = [3], that is, whenever item 3
appears in a transaction, one or more of other items from s
happen to appear in Ti, too. So, item 3 alone does not provide
any additional evidence for the given itemset s. This is why
our rule-generating algorithm ignores such rules.It is
important to note here that one might be interested in rules
that suggest the absence of items.

Fig. 4. Rule graph construction for the testing itemset [2, 3]
using IT-tree in Fig. 2 (Testing itemset possesses nonempty
intersections with only four nodes of the tree). (a) After node
[1,2,3,4,5], (b) after node [1,2,4], (c) after node [2,4], and (d)
shows the final rule graph, G, after node [2,5].
 TABLE 1
 Rule Set That Resides in G

Arshiya Subhani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1856-1861

1859

 For instance, [2, 3] (1 = absent), that is, when items 2
and 3 are already present in the cart, then item 1 is unlikely to
be added to the cart in the future. In this event, the IT-tree-
building algorithm has to regard the (item; value) pair as an
item. For instance(1 = present) is one item and (1 = absent)
is another. Then, the generated ruleset will eventually consist
of rules suggesting both the presence and absence of items.
These rules then have to be combined to yield the final
decision.Note that we select only rules that exceed the
minimum support and the minimum confidence in the rule
combination step. In addition, if two rules with the same
consequent have overlapping antecedents such that the
antecedent of one rule is a subset of the antecedent of the
other rule (e.g., (ac),(a,bc)), we only consider the rule
with the higher confidence. How the selected rules are used
for prediction is described in the next section.

4. EMPLOYING DS THEORY

When searching for a way to predict the presence or
absence of an item ij in a partially observed shopping cart s,
we wanted to use association rules. However, many rules
with equal antecedents differ in their consequents—some of
these consequents contain ij, others do not. The question is
how to combine (and how to quantify) the potentially
conflicting evidence. One possibility is to rely on the DS
theory of evidence combination. Let us now describe our
technique, which we refer to by the acronym DS-
ARM(Dempster-Shafer-based Association Rule Mining).
4.1 Preliminaries
 Let Θ = {θ(1), . . . , θ(n)} be a finite set of mutually
exclusive and exhaustive propositions signifying the “scope
of expertise” about some problem domain. It is referred to as
its frame of discernment (FoD).A proposition θ(i), which is
referred to as a singleton, represents the lowest level of
discernible information. The elements in 2Θ, i.e., the power
set of Θ, form all propositions of interest. A proposition that
is not a singleton is referred to as a composite, e.g., (θ(1),
θ(2)).
 Definition:
The mapping m : 2Θ → [0, 1] is a basic belief assignment
(BBA) or mass assignment for the FoD Θ if m(Θ) = 0 and ∑
A�Θ m(A) = 1.
 The BBA of a proposition is free to move into its
individual singletons. This is how the DS theory models
ignorance. A proposition that possesses a nonzero BBA is
referred to as a focal element; and the set of focal elements is
the core and is denoted by F. The triple {Θ,F,m} is referred
to as the body of evidence (BoE); and the number of focal
elements is |F|.

4.2 Concrete Application to Our Task
4.2.1 Basic Belief Assignment
In association mining techniques, a user-set minimum
support decides about which rules have “high support.” Once
the rules are selected, they are all treated the same,
irrespective of how high or how low their support. Decisions

are then made solely based on the confidence value of the
rule. However, a more intuitive approach would give more
weight to rules with higher support. Therefore, we propose a
novel method to assign to the rules masses based on both
their confidence and support values. However, the support
value should have a smaller impact on the mass.In many
applications, the training data set is skewed. To account for
this data set skewness, we propose to adopt a modified
support value as follows:

Definition (Partitioned-Support). The partitioned-support
p_supp of the rule r(a)r(c), is the percentage of transactions
that contain ra among those transactions that contain r(c) , i.e.,
p_supp = support(r(a) U r(c))/support(r(c)). - (2)

With Definition 2 in place, we take inspiration from the
traditional Fα-measure [24] and use the weighted harmonic
mean of support and confidence to assign the following
BBA to the rule r(a)ij:

m(ij/r

a) = β, for ij=present,
1- β, for ij= Θ, - (3)
0, otherwise

Where
 β = (1+α2)*conf*p_supp
 α 2*conf+p_supp - (4)
Where
 α € [0,1]

Note that, for the task at hand, ij = 1 and hence,
Θ={(ij =present),(ij=absent). Note that, as α decreases, the
emphasis placed upon the partitioned-support measure in m(·)
decreases as well. With this mass allocation, the effectiveness
of a rule is essentially tied to both its confidence and
partitioned support.

4.2.2 Discounting Factor
Following the work in [15], the reliability of the evidence
provided by each contributing BoE is addressed by
incorporating the following discounting factor:

d=[1+Ent]-1[1+ln(n=(r(a))]-1, - (5)

with Ent= - ∑ m(ij/r

(a))ln[m(ij/r
(a))].

 ij€ Θ

Recall that n denotes the number of items in the database.
The term [1+Ent]-1 accounts for the uncertainty of the rule
about its consequent. The term [1+ln(n=(r(a))]-1 accounts for
the nonspecificity in the rule antecedent. Note that d
increases as Ent decreases and length of rule antecedent
increases. As dictated by 11, the BBA then gets accordingly
modified. The DRC is then used on the modified BoEs to
combine the evidence.

Example 3.Table 2 shows a ruleset generated for itemset
(bread, milk) and a supper market data set that contains five

Arshiya Subhani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1856-1861

1860

distinct items viz. {egg, bread, butter, milk, wheat bread}.
Integers from 1 to 5 are used to denote the presence of items
and 6 to 10 are used to denote the absence of items. For
instance, (egg = present)=1,(bread = present)=2,(egg =
absent)=6 etc. Last two columns show the computed BBA
and d values of the rules. In this example, mass assignment is
done using three times less weight for the partitioned-
support compared to the confidence, i.e., α=0:33 and d is
computed using (5).

TABLE 2
An Example Ruleset

To keep the rules as independent as possible, we then
removed the overlapping rules while keeping the highest
confidence rule. If two overlapping rules have the same
confidence, the rule with the lower support is dropped. For
instance, rules 2 and 3 both suggest “no egg,” and the
antecedent of the second rule is a subset of the antecedent of
the first rule. However, rule 2 has lower confidence than
rule 3.

5. CONCLUSION
The mechanism reported in this paper focuses on one of the
oldest tasks in association mining: based on incomplete
information about the contents of a shopping cart, can we
predict which other items the shopping cart contains? Our
literature survey indicates that, while some of the recently
published systems can be used to this end, their practical
utility is constrained, for instance, by being limited to
domains with very few distinct items. Bayesian classifier can
be used too, but we are not aware of any systematic study of
how it might operate under the diverse circumstances

encountered in association mining. We refer to our technique
by the acronym DS-ARM. The underlying idea is simple:
when presented with an incomplete list s of items in a
shopping cart, our program
first identifies all high-support, high-confidence rules that
have as antecedent a subset of s. Then, it combines the
consequents of all these (sometimes conflicting) rules and
creates a set of items most likely to complete the shopping
cart. Two major problems complicate the task: first, how to
identify the relevant rules in a computationally efficient
manner; second, how to combine (and quantify) the evidence
of conflicting rules. We addressed the former issue by the
recently proposed technique of IT-trees and the latter by a
few simple ideas from the DS theory.

6. REFERENCES
[1] S. Noel, V.V. Raghavan, and C.H. Chu, “Visualizing Association

Mining Results through Hierarchical Clusters,” Proc. Int’l Conf.Data
Mining (ICDM ’01) pp. 425-432, Nov./Dec. 2001.

[2] P. Bollmann-Sdorra, A. Hafez, and V.V. Raghavan, “A Theoretical
Framework for Association Mining Based on the Boolean Retrieval
Model,” Data Warehousing and Knowledge Discovery: Proc.Third Int’l
Conf. (DaWaK ’01), pp. 21-30, Sept. 2001.

[3] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” Proc. ACM Special Interest
Group on Management of Data (ACM SIGMOD),pp. 207-216, 1993.

[4] M. Kubat, A. Hafez, V.V. Raghavan, J.R. Lekkala, and W.K. Chen,
“Itemset Trees for Targeted Association Querying,” IEEE
Trans.Knowledge and Data Eng., vol. 15, no. 6, pp. 1522-1534,
Nov./Dec.2003.

[5] V. Ganti, J. Gehrke, and R. Ramakrishnan, “Demon: Mining and
Monitoring Evolving Data,” Proc. Int’l Conf. Data Eng., 1999.

[6] J. Gehrke, V. Ganti, and R. Ramakrishnan, “Detecting Change in
Categorical Data: Mining Contrast Sets,” Proc. ACM
SIGMODSIGACT- SIGART Symp. Principles of Database Systems,
pp. 126-137, 2000.

[7] V. Raghavan and A. Hafez, “Dynamic Data Mining,” Proc. 13th Int’l
Conf. Industrial and Eng. Applications of Artificial Intelligence and
Expert Systems IEA/AIE, pp. 220-229, June 2000.

[8] J. Zhang, S.P. Subasingha, K. Premaratne, M.-L. Shyu, M. Kubat, and
K.K.R.G.K. Hewawasam, “A Novel Belief Theoretic Association Rule
Mining based classifier for Handling Class Label ambiguities,” Proc.
Workshop Foundations of Data Mining (FDM ’04), Int’l Conf. Data
Mining (ICDM ’04), Nov. 2004.

[9]] K.K.R.G.K. Hewawasam, K. Premaratne, and M.-L. Shyu, “Rule
Mining and Classification in a Situation Assessment Application: A
Belief Theoretic Approach for Handling Data Imperfections,” IEEE
Trans. Systems, Man, Cybernetics, B, vol. 37, no. 6 pp. 1446-1459,
Dec. 2007.

Arshiya Subhani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1856-1861

1861

